Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Cell Endocrinol ; 590: 112254, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677465

RESUMO

During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 µg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 µg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R100-R109, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899754

RESUMO

Cannabidiol (CBD) use has grown exponentially more popular in the last two decades, particularly among older adults (>55 yr), though very little is known about the effects of CBD use during age-associated metabolic dysfunction. In addition, synthetic analogues of CBD have generated great interest because they can offer a chemically pure product, which is free of plant-associated contaminants. To assess the effects of a synthetic analogue of CBD (H4CBD) on advanced metabolic dysfunction, a cohort of 41-wk-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered 200 mg H4CBD/kg by oral gavage for 4 wk. Animals were fed ad libitum and monitored alongside vehicle-treated OLETF and Long-Evans Tokushima Otsuka (LETO) rats, the lean-strain controls. An oral glucose-tolerance test (oGTT) was performed after 4 wk of treatment. When compared with vehicle-treated, OLETF rats, H4CBD decreased body mass (BM) by 15%, which was attributed to a significant loss in abdominal fat. H4CBD reduced glucose response (AUCglucose) by 29% (P < 0.001) and insulin resistance index (IRI) by 25% (P < 0.05) compared with OLETF rats. However, H4CBD did not statically reduce fasting blood glucose or plasma insulin, despite compensatory increases in skeletal muscle native insulin receptor (IR) protein expression (54%; P < 0.05). H4CBD reduced circulating adiponectin (40%; P < 0.05) and leptin (47%; P < 0.05) and increased ghrelin (75%; P < 0.01) compared with OLETF. Taken together, a chronic, high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of the profound loss of visceral adiposity.NEW & NOTEWORTHY Cannabis product use has grown in the last two decades despite the lack of research on Cannabidiol (CBD)-mediated effects on metabolism. Here, we provide seminal data on CBD effects during age-associated metabolic dysfunction. We gave 41-wk-old OLETF rats 200 mg H4CBD/kg by mouth for 4 wk and noted a high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of loss of visceral adiposity.


Assuntos
Canabidiol , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Humanos , Ratos , Animais , Idoso , Ratos Endogâmicos OLETF , Síndrome Metabólica/tratamento farmacológico , Insulina , Glucose , Canabidiol/farmacologia , Ratos Long-Evans , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108577

RESUMO

It has been our pleasure to have been able to develop two special issues within the International Journal of Molecular Sciences: (1) Renin-Angiotensin-Aldosterone System in Pathologies and (2) Renin-Angiotensin-Aldosterone System in Metabolism & Disease [...].


Assuntos
Doenças Metabólicas , Sistema Renina-Angiotensina , Humanos , Aldosterona , Renina/metabolismo , Angiotensina II/metabolismo
4.
Clin Exp Pharmacol Physiol ; 50(3): 228-237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36398458

RESUMO

Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Here, we report that chronic ARB treatment with olmesartan (10 mg/kg/day by oral gavage for 6 weeks) partially but significantly ameliorated accumulation of oxidized and ubiquitinated proteins, astrogliosis and transformation to neurotoxic astrocytes in the brain of old OLETF rats, which otherwise exhibit the progression of these pathological hallmarks associated with MetS. Additionally, olmesartan treatment restored claudin-5 and ZO-1, markers of the structural integrity of the blood-brain barrier as well as synaptic protein PSD-95, which were otherwise decreased in old OLETF rats, particularly in the hippocampus, a critical region in cognition, memory and AD. These data demonstrate that the progression of MetS in OLETF rats is associated with deterioration of various aspects of neuronal integrity that may manifest neurodegenerative conditions and that overactivation of angiotensin receptor directly or indirectly contributes to these detriments. Thus, olmesartan treatment may slow or delay the onset of degenerative process in the brain and subsequent neurological disorders associated with MetS.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Ratos , Animais , Ratos Endogâmicos OLETF , Antagonistas de Receptores de Angiotensina , Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Long-Evans , Síndrome Metabólica/metabolismo , Encéfalo/metabolismo , Glicemia/metabolismo
5.
Mol Cell Endocrinol ; 560: 111811, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36397615

RESUMO

SGLT2 inhibitors (SGLT2i) are emerging as a novel therapy for type 2 diabetes due to their effective hypoglycemic and potential cardio- and nephroprotective effects, while caloric restriction (CR) is a common behavioral modification to improve adiposity and insulin resistance. Therefore, both interventions simultaneously may potentially further improve metabolic syndrome by enhancing carbohydrate metabolism. To test this hypothesis, cohorts of 10-week old, male Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were treated with SGLT2i (10 mg luseoglifozin/kg/day x 4 wks) (OLETF only) and/or 30% CR (2 wks at 12 weeks of age). CR maintained body mass in both strains while SGLT2i alone did not have any effect on body mass. Simultaneous treatments decreased SBP in OLETF vs SGLT2i alone, decreased insulin resistance index (IRI), and increased creatinine clearance vs OLETF ad lib. Conversely, CR decreased albuminuria independent of SGLT2i. In conclusion, SGLT2i treatment by itself did not elicit significant improvements in insulin resistance, kidney function or blood pressure. However, when combined with CR, these changes where more profound than with CR alone without inducing chronic hypoglycemia.


Assuntos
Resistência à Insulina , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Masculino , Ratos , Glicemia/metabolismo , Restrição Calórica , Diabetes Mellitus Tipo 2/metabolismo , Rim/metabolismo , Ratos Endogâmicos OLETF , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
J Am Nutr Assoc ; 42(3): 242-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35512761

RESUMO

Almond consumption can improve cardiometabolic (CM) health. However, the mechanisms underlying those benefits are not well characterized. This study explored the effects of consuming a snack of almonds vs. crackers for 8 weeks on changes in metabolomic profiles in young adults (clinicaltrials.gov ID: NCT03084003).Participants (n = 73, age: 18-19 years, BMI: 18-41 kg/m2) were randomly assigned to consume either almonds (2 oz/d, n = 38) or an isocaloric control snack of graham crackers (325 kcal/d, n = 35) daily for 8 weeks. Blood samples were collected at baseline prior to and at 4 and 8 weeks after the intervention. Metabolite abundances in the serum were quantified by hydrophilic interaction chromatography quadrupole (Q) time-of-flight (TOF) mass spectrometry (MS/MS), gas chromatography (GC) TOF MS, CSH-ESI (electrospray) QTOF MS/MS, and targeted analyses for free PUFAs, total fatty acids, oxylipins and endocannabinoids. Linear mixed model analyses with baseline-adjustment were conducted, and those results were used for enrichment and network analyses. Microbial community pathway predictions from 16S rRNA sequencing of fecal samples was done using PICRUST2.Almond consumption enriched unsaturated triglycerides, unsaturated phosphatidylcholines, saturated and unsaturated lysophosphatidylcholines, tricarboxylic acids, and tocopherol clusters (p < 0.05). Targeted analyses reveal lower levels of omega-3 total fatty acids (TFAs) overall in the almond group compared to the cracker group (p < 0.05). Microbial amino acid biosynthesis, and amino sugar and nucleotide sugar metabolism pathways were also differentially enriched at the end of the intervention (p < 0.05).The study demonstrates the differential effects of almonds on host tocopherol, lipid, and TCA cycle metabolism with potential changes in microbial metabolism, which may interact with host metabolism to facilitate the CM benefits.


Assuntos
Prunus dulcis , Humanos , Adulto Jovem , Adolescente , Adulto , Lanches , RNA Ribossômico 16S , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos , Tocoferóis
7.
Nutrients ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558374

RESUMO

The sensory properties of foods guide food choices and intake, importantly determining nutritional and health status. In communities that have inconsistent access to nutritious foods, such as food deserts, food taste perceptions and preferences have yet to be explored. The purpose of this study was to examine how taster status (supertaster vs. non-taster) and food security status (high or marginal vs. low or very low) influences food taste intensities, food preferences and perceptions, and diet quality in a cohort of students from a food desert campus in the Central Valley of California. Moreover, the complex relationship of socioeconomic status, race/ethnicity, and sex on cardiometabolic and cognitive health warrants further examination. Two hundred fifty participants (aged 18-24 years) living in a food desert campus were recruited in 2018 for this cross-sectional study where participants underwent taste tests on selected fruits, vegetables, and nuts, and clinical tests (anthropometrics, blood glucose, blood pressure, and endothelial function), cognitive function tests (memory and attention), diet quality assessment (Healthy Eating Index (HEI)), and food preference and perception assessments. Food taste intensities were influenced by sex with bitter and umami taste intensities of several foods being perceived more intensely by males. Moreover, food liking was largely influenced by ethnicity with Hispanics having higher liking ratings for several foods compared with non-Hispanics. Both, Hispanics and females, had higher total fruit HEI scores and lower attention scores than non-Hispanics and males, respectively. Females also had lower blood pressure, reactive hyperemia index, and fasting blood glucose. Food-insecure individuals rated cost and convenience as more important factors for overall food consumption and had lower attention scores than those with higher food-security status. Future research should consider the complex interactions of factors such as taste and flavor perception, sex, ethnicity, prior exposure to foods, and other environmental factors when studying food preferences and health in young adults.


Assuntos
Desertos Alimentares , Preferências Alimentares , Masculino , Feminino , Adulto Jovem , Humanos , Preferências Alimentares/fisiologia , Estudos Transversais , Glicemia , Dieta
8.
Medicina (Kaunas) ; 58(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295596

RESUMO

Background and Objectives: Perilipins 1-5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms' expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Fatores de Transcrição , Ratos , Feminino , Animais , Gravidez , Perilipina-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos , Colesterol
9.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142809

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects up to 20% of the world's population. Overactivation of the angiotensin receptor type 1 (AT1) contributes to metabolic dysfunction and increased oxidant production, which are associated with NAFLD and impaired hepatic lipid metabolism. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the expression of antioxidant phase II genes by binding to the antioxidant response element (ARE); however, the mechanisms by which AT1 contributes to this pathway during the progression of NAFLD remain unresolved. To investigate hepatic Nrf2 response to a hyperglycemic challenge, we studied three groups of rats (male, 10-weeks-old): (1) untreated, lean Long Evans Tokushima Otsuka (LETO), (2) untreated, obese Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + angiotensin receptor blocker (OLETF + ARB; 10 mg olmesartan/kg/d × 6 weeks). Livers were collected after overnight fasting (T0; baseline), and 1 h and 2 h post-oral glucose load. At baseline, chronic AT1 blockade increased nuclear Nrf2 content, reduced expression of glutamate-cysteine ligase catalytic (GCLC) subunit, glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2), mitochondrial catalase activity, and hepatic 4-hydroxy-2-nonenal (4-HNE) content. The expression of hepatic interleukin-1 beta (IL-1ß) and collagen type IV, which are associated with liver fibrosis, were decreased with AT1 blockade. Glucose increased Nrf2 translocation in OLETF but was reduced in ARB, suggesting that glucose induces the need for antioxidant defense that is ameliorated with ARB. These results suggest that overactivation of AT1 promotes oxidant damage by suppressing Nrf2 and contributing to hepatic fibrosis associated with NAFLD development.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antioxidantes/farmacologia , Catalase , Colágeno Tipo IV , Glucose/metabolismo , Glutamato-Cisteína Ligase , Insulina , Resistência à Insulina/fisiologia , Interleucina-1beta , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Oxidantes/farmacologia , Ratos , Receptores de Angiotensina
10.
Mol Cell Endocrinol ; 555: 111729, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921918

RESUMO

Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Síndrome Metabólica , Angiotensina I , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Expressão Gênica , Glucose , Insulina , Lipogênese , Fígado , Obesidade , Fragmentos de Peptídeos , Ratos , Ratos Endogâmicos OLETF , Receptor Tipo 1 de Angiotensina
11.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624791

RESUMO

The onset of type II diabetes increases the heart's susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart's redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.

12.
Endocrine ; 75(1): 92-107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34327606

RESUMO

PURPOSE: Angiotensin receptor blockers (ARBs) can ameliorate metabolic syndrome (MetS)-associated dyslipidemia, hepatic steatosis, and glucose intolerance, suggesting that angiotensin receptor (AT1) over-activation contributes to impaired lipid and glucose metabolism, which is characteristic of MetS. The aim of this study was to evaluate changes in the lipid profile and proteins of fatty acid uptake, triacylglycerol (TAG) synthesis, and ß-oxidation to better understand the links between AT1 overactivation and non-alcoholic fatty liver disease (NAFLD) during MetS. METHODS: Four groups of 25-week-old-rats were used: (1) untreated LETO, (2) untreated OLETF, (3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 weeks) and (4) OLETF ± ARB (MINUS; 10 mg olmesartan/kg/d × 4 weeks, then removed until dissection). To investigate the dynamic shifts in metabolism, animals were dissected after an oral glucose challenge (fasting, 3 and 6 h post-glucose). RESULTS: Compared to OLETF, plasma total cholesterol and TAG remained unchanged in ARB. However, liver TAG was 55% lesser in ARB than OLETF, and remained lower throughout the challenge. Basal CD36 and ApoB were 28% and 29% lesser, respectively, in ARB than OLETF. PRDX6 abundance in ARB was 45% lesser than OLETF, and it negatively correlated with liver TAG in ARB. CONCLUSIONS: Chronic blockade of AT1 protects the liver from TAG accumulation during glucose overload. This may be achieved by modulating NEFA uptake and increasing TAG export via ApoB. Our study highlights the contributions of AT1 signaling to impaired hepatic substrate metabolism and the detriments of a high-glucose load and its potential contribution to steatosis during MetS.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Resistência à Insulina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Glicemia/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Receptor Tipo 1 de Angiotensina/metabolismo , Triglicerídeos/metabolismo
13.
PLoS One ; 16(11): e0252360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34727112

RESUMO

Caloric restriction (CR) is one of the most important behavioral interventions to reduce excessive abdominal adiposity, which is a risk factor for the development of insulin resistance. Previous metabolomics studies have characterized substrate metabolism during healthy conditions; however, the effects of CR and subsequent mass recovery on shifts in substrate metabolism during insulin resistance (IR) have not been widely investigated. To assess the effects of acute CR and the subsequent mass recovery on shifts in substrate metabolism, a cohort of 15-week old Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were calorie restricted (CR: 50% × 10 days) with or without partial body mass recovery (PR; 73% x 7 days), along with their respective ad libitum controls. End-of-study plasma samples were analyzed for primary carbon metabolites by gas chromatography (GC) time-of-flight (TOF) mass spectrometry (MS) data acquisition. Data analysis included PCA, Pearson correlation vs previously reported variables (adipose and body masses, and insulin resistance index, IRI), and metabolomics maps (MetaMapp) generated for the most significant group comparisons. All treatments elicited a significant group differentiation in at least one principal component. CR improved TCA cycle in OLETF, and increased lipolysis and proteolysis. These changes were reversed after PR except for gluconeogenesis. Plasma lipid concentrations were inversely correlated to IRI in LETO, but not OLETF. These shifts in substrate metabolism suggest that the CR-induced decreases in adipose may not be sufficient to more permanently alter substrate metabolism to improve IR status during metabolic syndrome.


Assuntos
Restrição Calórica , Gluconeogênese/fisiologia , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Fígado/metabolismo , Tecido Adiposo/metabolismo , Animais , Teste de Tolerância a Glucose , Proteólise , Ratos , Ratos Endogâmicos OLETF
14.
Am J Physiol Endocrinol Metab ; 321(5): E714-E727, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658252

RESUMO

Inappropriate activation of the renin-angiotensin system decreases glucose uptake in peripheral tissues. Chronic angiotensin receptor type 1 (AT1) blockade (ARB) increases glucose uptake in skeletal muscle and decreases the abundance of large adipocytes and macrophage infiltration in adipose. However, the contributions of each tissue to the improvement in hyperglycemia in response to AT1 blockade are not known. Therefore, we determined the static and dynamic responses of soleus muscle, liver, and adipose to an acute glucose challenge following the chronic blockade of AT1. We measured adipocyte morphology along with TNF-α expression, F4/80- and CD11c-positive cells in adipose and measured insulin receptor (IR) phosphorylation and AKT phosphorylation in soleus muscle, liver, and retroperitoneal fat before (T0), 60 (T60) and 120 (T120) min after an acute glucose challenge in the following groups of male rats: 1) Long-Evans Tokushima Otsuka (LETO; lean control; n = 5/time point), 2) obese Otsuka Long Evans Tokushima Fatty (OLETF; n = 7 or 8/time point), and 3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 7 or 8/time point). AT1 blockade decreased adipocyte TNF-α expression and F4/80- and CD11c-positive cells. In retroperitoneal fat at T60, IR phosphorylation was 155% greater in ARB than in OLETF. Furthermore, in retroperitoneal fat AT1 blockade increased glucose transporter-4 (GLUT4) protein expression in ARB compared with OLETF. IR phosphorylation and AKT phosphorylation were not altered in the liver of OLETF, but AT1 blockade decreased hepatic Pck1 and G6pc1 mRNA expressions. Collectively, these results suggest that chronic AT1 blockade improves obesity-associated hyperglycemia in OLETF rats by improving adipocyte function and by decreasing hepatic glucose production via gluconeogenesis.NEW & NOTEWORTHY Inappropriate activation of the renin-angiotensin system increases adipocyte inflammation contributing to the impairment in adipocyte function and increases hepatic Pck1 and G6pc1 mRNA expression in response to a glucose challenge. Ultimately, these effects may contribute to the development of glucose intolerance.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Obesidade , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Expressão Gênica/efeitos dos fármacos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Receptor Tipo 1 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
15.
Metabolism ; 125: 154912, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648770

RESUMO

Caloric restriction (CR) is the first line intervention to reduce adiposity and total body mass (BM) to improve insulin resistance and ameliorate metabolic derangements. However, the lost adipose mass is difficult to maintain reduced in the long term due to several factors including compensatory changes in orexigenic hormones, adipokine release, pro-inflammatory state, adipose tissue morphology, and resting metabolic rate as a consequence of the caloric deficit. Hence, most patients undergoing a BM reduction intervention ultimately regain the lost mass and too often additional adipose mass overtime, which is hypothesized to have increased deleterious effects chronically. In this mini-review we describe the effects of BM cycling (loss and regain) on insulin resistance and cardiometabolic health and factors that may predict BM regain in clinical studies. We also describe the factors that contribute to the chronic deleterious effects of BM cycling in rodent models of diet-induced obesity (DIO) and other metabolic defects. We conclude that most of the improvements in insulin resistance are observed after a profound loss in BM regardless of the diet and that BM cycling abrogates these beneficial effects. We also suggest that more BM cycling studies are needed in rodent models resembling the development of type 2 diabetes mellitus (T2DM) in humans.


Assuntos
Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Resistência à Insulina/fisiologia , Tecido Adiposo/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos
16.
Mitochondrion ; 61: 125-137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536562

RESUMO

Mitochondria are dynamic, interactive organelles that connect cellular signaling and whole-cell homeostasis. This "mitochatting" allows the cell to receive information about the mitochondria's condition before accommodating energy demands. Mitofusin 2 (Mfn2), an outer mitochondrial membrane fusion protein specializes in mediating mitochondrial homeostasis. Early studies defined the biological significance of Mfn2, while latter studies highlighted its role in substrate metabolism. However, determining Mfn2 potential to contribute to energy homeostasis needs study. This review summarizes current literature on mitochondrial metabolic processes, dynamics, and evidence of interactions among Mfn2 and regulatory processes that may link Mfn2's role in maintaining mitochondrial function and substrate metabolism.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Metabolismo Energético , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Mitocondriais/genética
17.
Physiol Rep ; 9(16): e14858, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34405550

RESUMO

In order for the heart to maintain its continuous mechanical work and provide the systolic movement to uphold coronary blood flow, substantial synthesis of adenosine triphosphate (ATP) is required. Under normal conditions cardiac tissue utilizes roughly 70% fatty acids (FA), and 30% glucose for the production of ATP; however, during impaired metabolic conditions like insulin resistance and diabetes glucose metabolism is dysregulated and FA account for 99% of energy production. One of the major consequences of a shift in FA metabolism in cardiac tissue is an increase in reactive oxygen species (ROS) and lipotoxicity, which ultimately lead to mitochondrial dysfunction. Thyroid hormones (TH) have direct effects on cardiac function and glucose metabolism during impaired metabolic conditions suggesting that TH may improve glucose metabolism in an insulin resistant condition. None-classical TH signaling in the heart has shown to phosphorylate protein kinase B (Akt) and increase activity of phosphoinositide-3-kinase (PI3K), which are critical mediators in the insulin-stimulated glucose uptake pathway. Studies on peripheral tissues such as skeletal muscle and adipocytes have demonstrated TH treatment improved glucose intolerance in a diabetic model and increased insulin-regulated glucose transporter (GLUT4) mRNA levels. GLUT4 is a downstream target of thyroid response element (TRE), which demonstrates that THs regulate glucose via GLUT4. Elevated 3,5,3'-triiodothyronine (T3) increased glucose oxidation rate and decreased the glycolytic intermediate, fructose 6-phosphate (F6P) in cardiomyocytes, in addition to increasing mitochondrial biogenesis and pyruvate transport across the mitochondrial membrane. These findings along with a few other studies on T3 treatment in cardiac tissue suggest TH may improve glucose metabolism in an insulin resistant model and ameliorate the effects of diabetes and metabolic syndrome. This review highlights the potential benefits of exogenous TH on ameliorating metabolic dysfunction in the heart.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos
18.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R537-R546, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346724

RESUMO

The prolonged, postweaning fast of northern elephant seal (Mirounga angustirostris) pups is characterized by a reliance on lipid metabolism and reversible, fasting-induced insulin resistance, providing a unique model to examine the effects of insulin on lipid metabolism. We have previously shown that acute insulin infusion induced a shift in fatty acid metabolism dependent on fasting duration. This study complements the previous study by examining the effects of fasting duration and insulin infusion on circulating levels of oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids. Northern elephant seal pups were studied at two postweaning periods (n = 5/period): early fasting (1-2 wk postweaning; 127 ± 1 kg) and late fasting (6-7 wk postweaning; 93 ± 4 kg). Different cohorts of pups were weighed, sedated, and infused with 65 mU/kg of insulin. Plasma was collected prior to infusion (T0) and at 10, 30, 60, and 120 min postinfusion. A profile of ∼80 oxylipins was analyzed by UPLC-ESI-MS/MS. Nine oxylipins changed between early and late fasting and eight were altered in response to insulin infusion. Fasting decreased prostaglandin F2α (PGF2α) and increased 14,15-dihydroxyicosatrienoic acid (14,15-DiHETrE), 20-hydroxyeicosatetraenoic acid (20-HETE), and 4-hydroxy-docosahexaenoic acid (4-HDoHE) (P < 0.03) in T0 samples, whereas insulin infusion resulted in an inverse change in area-under-the-curve (AUC) levels in these same metabolites (P < 0.05). In addition, 12-12-hydroperoxyeicosatetraenoic acid (HpETE) and 12-HETE decreased with fasting and insulin infusion, respectively (P < 0.04). The oxylipins altered during fasting and in response to insulin infusion may contribute to the manifestation of insulin resistance and participate in the metabolic regulation of associated cellular processes.


Assuntos
Jejum/sangue , Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Insulina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxilipinas/sangue , Focas Verdadeiras/sangue , Animais , Biomarcadores/sangue , Infusões Parenterais
19.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R393-R403, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33407018

RESUMO

The postweaning fast of northern elephant seal pups is characterized by a lipid-dependent metabolism and associated with a decrease in plasma glucagon-like peptide-1 (GLP-1), insulin, and glucose and increased gluconeogenesis (GNG) and ketogenesis. We have also demonstrated that exogenous GLP-1 infusion increased plasma insulin despite simultaneous increases in cortisol and glucagon, which collectively present contradictory regulatory stimuli of GNG, ketogenesis, and glycolysis. To assess the effects of GLP-1 on metabolism using primary carbon metabolite profiles in late-fasted seal pups, we dose-dependently infused late-fasted seals with low (LDG; 10 pM/kg; n = 3) or high (HDG; 100 pM/kg; n = 4) GLP-1 immediately following a glucose bolus (0.5 g/kg), using glucose without GLP-1 as control (n = 5). Infusions were performed in similarly aged animals 6-8 wk into their postweaning fast. The plasma metabolome was measured from samples collected at five time points just prior to and during the infusions, and network maps constructed to robustly evaluate the effects of GLP-1 on primary carbon metabolism. HDG increased key tricarboxylic acid (TCA) cycle metabolites, and decreased phosphoenolpyruvate and acetoacetate (P < 0.05) suggesting that elevated levels of GLP-1 promote glycolysis and suppress GNG and ketogenesis, which collectively increase glucose clearance. These GLP-1-mediated effects on cellular metabolism help to explain why plasma GLP-1 concentrations decrease naturally in fasting pups as an evolved mechanism to help conserve glucose during the late-fasting period.


Assuntos
Glicemia/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Gluconeogênese/efeitos dos fármacos , Corpos Cetônicos/metabolismo , Focas Verdadeiras/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Jejum/sangue , Infusões Intravenosas , Masculino , Metaboloma , Metabolômica , Focas Verdadeiras/sangue , Fatores de Tempo , Desmame
20.
Artigo em Inglês | MEDLINE | ID: mdl-32587574

RESUMO

Caloric restriction, among other behavioral interventions, has demonstrated benefits on improving glycemic control in obesity-associated diabetic subjects. However, an acute and severe intervention without proper maintenance could reverse the initial benefits, with additional metabolic derangements. To assess the effects of an acute caloric restriction in a metabolic syndrome model, a cohort of 15-week old Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were calorie restricted (CR: 50% × 10 days) with or without a 10-day body mass (BM) recovery period, along with their respective ad libitum controls. An oral glucose tolerance test (oGTT) was performed after CR and BM recovery. Both strains had higher rates of mass gain during recovery vs. ad lib controls; however, the regain was partial (ca. 50% of ad lib controls) over the measurement period. Retroperitoneal and epididymal adipose masses decreased 30% (8.8 g, P < 0.001) in OLETF; however, this loss only accounted for 11.5% of the total BM loss. CR decreased blood glucose AUC 16% in LETO and 19% in OLETF, without significant decreases in insulin. Following CR, hepatic expression of the gluconeogenic enzyme, PEPCK, was reduced 55% in OLETF compared to LETO, and plasma triglycerides (TG) decreased 86%. Acute CR induced improvements in glucose tolerance and TG suggestive of improvements in metabolism; however, partial recovery of BM following CR abolished the improvement in glucose tolerance. The present study highlights the importance of proper maintenance of BM after CR as only partial recovery of the lost BM reversed benefits of the initial mass loss.


Assuntos
Peso Corporal , Restrição Calórica , Resistência à Insulina , Obesidade/metabolismo , Animais , Pressão Sanguínea , Gluconeogênese , Teste de Tolerância a Glucose , Rim/metabolismo , Fígado/metabolismo , Masculino , Obesidade/sangue , Obesidade/fisiopatologia , Ratos Long-Evans , Transportador 2 de Glucose-Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...